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The charge-flipping algorithm has been adapted to allow symmetry constraints

to be included during the solution of structures from diffraction data. Rather

than impose symmetry at the start of the algorithm, which is known to cause the

process to stagnate, it is shown that the algorithm must be allowed to find an

intermediate stable solution first. Although care is needed when using this

modified algorithm, the improvement in the fidelity of the structure solution is

considerable.

1. Introduction

Charge flipping is a relatively new technique, and is gaining in

popularity and importance for solving the phase problem in

X-ray, neutron and electron diffraction studies (Oszlányi &

Süto��, 2004). Unlike conventional direct methods, where phase-

invariant relationships are used as a basis for phasing reflec-

tions (Karle & Hauptman, 1950; Giacovazzo, 1998), the

charge-flipping algorithm uses only a single basic principle: the

requirement that the final structure solution, be it an electron

density for X-rays or a projected crystal potential in the case

of electron diffraction, is sparse and positive at all points.

From this starting point, successful solutions have been found

for a wide variety of crystal structures; in almost all cases these

are from single-crystal X-ray diffraction data (Oszlányi &

Süto��, 2005; Baerlocher et al., 2007; Lidin, 2008). Charge flip-

ping has been successfully used in diffractive imaging studies

using electron diffraction data (Wu et al., 2005); however, the

difficulties presented by dynamical diffraction and in accurate

recording of intensities in electron diffraction mean that it is

sometimes difficult to apply it to the solution of complex

structures.

One important feature of the algorithm is the requirement

that at least one external constraint is applied in real space to

ensure a reasonable solution to the diffraction data. For the

standard algorithm this is applied through a threshold value �;
all pixels in the real-space density with an intensity below this

value have their sign flipped during each iteration. The value

of � is important because structure factors that contribute to

strong positive peaks (with an intensity greater than �) in the

real-space density will be unaffected by the charge-flipping

process and so are effectively removed from the active part of

the iteration. For the cases described here we take � to be 5%

of the maximum intensity.

Other constraints have been proposed as ways of improving

the effectiveness of the charge-flipping algorithm. The

Superflip program (Palatinus & Chapuis, 2007) describes

several useful methods for improving the structure solution.

Coelho (2007) has combined a charge-flipping algorithm with

the tangent formula and has shown that this minimizes the

likelihood of the real-space intensity being condensed into

single peaks (the so-called ‘uranium atom’ solution), although

the intensities of the reflections used in the algorithm have to

be carefully controlled. Zhou & Harris (2008) have proposed a

‘residue-based’ charge-flipping technique which uses a resi-

dual of the calculated structure factors at each iteration of the

algorithm. This reduces the number of phases that are altered

in the flipping stage of the iteration and so greatly improves

the convergence properties of the algorithm. In the present

article, the use of known symmetry relationships is proposed

as an additional constraint. This should be of particular benefit

for electron diffraction data, in which typically only a two-

dimensional net of reflections is available, but where the

projection symmetry is often known.

2. The symmetry-modified algorithm

The application of symmetry to the recovered structure-factor

moduli, |Fh|, is a conventional first stage in preparing data for

phase retrieval, and applying similar symmetry constraints to

the recovered phases is simply using all of the available data to

maximize the likelihood of obtaining a successful structure. In

electron diffraction experiments, determination of the crys-

tallographic space group can be achieved in a relatively

straightforward fashion using, for example, convergent-beam

electron diffraction (CBED) (Buxton et al., 1976) indepen-

dently of any subsequent structure solution. Charge flipping is

normally undertaken on data sets with only Friedel symmetry

imposed (F��h ¼ Fh) because this allows the algorithm to move

freely in the N-dimensional solution space (where N is the

number of reflections to be phased) and so find a global

minimum in solution negativity. Enforcing symmetry has been

reported to reduce the likelihood of a successful solution

(Oszlányi & Süto��, 2004) by restricting the algorithm to a small

subset of solution space (as defined by the initial randomly

applied phases) which may not contain a minimum corre-

sponding to a strong solution. The present work supports the

suggestion in more recent studies (Oszlányi & Süto��, 2008) that



the timing of the application of symmetry is an important

factor in determining the success of the algorithm.

A schematic diagram of our symmetry-modified charge-

flipping algorithm is shown in Fig. 1. The application of

symmetry is performed in the reciprocal-space part of the

Fourier cycle. After the Fourier transform of the real-space

density, the solution exists as a list of structure factors. We

considered it to be easier to apply symmetry to the phases in

this list rather than to the individual pixels in the real-space

density, although there is no reason why a real-space phase

imposition should not be possible. The imposition of centro-

symmetry forces the structure-factor phases to assume the

closest value of 0 or �. This defines the origin of the unit cell

and so allows the position of the symmetry elements in the cell

to be assigned consistently. The charge-flipping protocol was

developed using the FFTW library for calculating Fourier

transforms (Frigo & Johnson, 2005) and the potential maps

were sampled to a scale of 500 pixels per nanometre to ensure

that the full resolution of the map was achieved with respect to

the input data; higher-resolution terms recovered by the

Fourier cycle were not included in the calculation.

Notwithstanding the possibility of applying this algorithm to

all types of diffraction data, we believe that this new version

may be of considerable benefit for electron diffraction studies.

Therefore, in this paper, we illustrate the improved perfor-

mance of the charge-flipping algorithm with applied symmetry

constraints by focusing on its application to simulated and

experimental electron diffraction patterns.

2.1. Preliminary structure solutions

Theoretical zonal kinematical structure factors for 300 kV

electron diffraction were calculated using the JEMS software

package (Stadelmann, 2004) for a series of complex oxide

crystals. Of these, several could be solved satisfactorily using

the charge-flipping algorithm in p1. An example is kinoite,

Ca2Cu2(H2O)2[Si3O10], shown in Fig. 2, in which (a) the ideal

and (b) the recovered potential maps are illustrated.
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Figure 1
Schematic diagram of the new charge-flipping algorithm, including the
application of symmetry constraints after psym iterations.

Figure 2
Potential maps showing (a) the ideal structure of kinoite and (b) the charge-flipping solution using p1 symmetry for kinoite after 50 iterations. (c) The
ideal structure of epidote. (d) The charge-flipping solution using p1 symmetry for epidote after 50 iterations. (e) The solution for epidote using the new
algorithm with p2 symmetry applied after 20 iterations; the total number of iterations was 50. All reflections in the range �15 � h; k � 15 were used for
all solutions.



In contrast, the solution of the structure of epidote,

Ca2(Fe,Al)3(SiO4)3(OH), is poor and the weaker atom peaks

are not recovered correctly. The ideal and recovered potential

maps for epidote are shown in Figs. 2(c) and (d). When p2

symmetry was applied after 20 iterations of the Fourier cycle, a

considerably more complete structure was recovered, as

shown in Fig. 2(e). Both kinoite and epidote are monoclinic

with space group P21/m. It was not clear from these examples

why some structures are readily solved in p1 while others

require higher-symmetry constraints. To investigate the algo-

rithm further it was used on a more complex test structure.

2.2. Erbium pyrogermanate – a test case for the new
algorithm

Erbium pyrogermanate (Er2Ge2O7), EGO, is tetragonal

with space group P41212, a = b = 0.6778 nm and c = 1.234 nm.

Using atomic coordinates determined by neutron diffraction

studies (Smolin, 1970), a set of kinematical electron structure

factors for �15 � h; k � 15 was calculated using JEMS. A

potential map projected along [001] was generated from these

structure factors and is shown in Fig. 3. The map shows a ring

of eight strong peaks corresponding to the erbium-atom

columns and four ‘doublet’ peaks, each comprising two

germanium-atom columns. The oxygen-atom columns add

only a small perturbation to this map and are not considered

significant compared to the heavy-atom peaks. The displace-

ment parameter B was set to zero for the the purpose of this

study. The presence of a small number of negative-intensity

contours is caused by the finite number of reflections intro-

duced into the inverse Fourier transform used to construct the

potential map.

The three different elements in EGO and its high space-

group symmetry ensure that the diffraction pattern will

contain a wide range of reflection intensities; because of the

nature of the charge-flipping algorithm this serves as a useful

test of the algorithm. When a pixel in the real-space solution

has a large positive value, the reflections that contribute to it

are considered to be correctly phased with respect to one

another and these reflections are ignored by the active part of

the iteration (the charge flipping). For a simple system where

the diffracted beams are either very strong or very weak this

will lead to a rapid convergence of all of the strong reflections

to a phase relationship that will return a structure even if some

of the strong reflections are phased incorrectly. In the case of

EGO, which has a wide range of reflection intensities, the

likelihood of medium- and weak-intensity reflections contri-

buting to a high-intensity pixel is very small unless the phasing

is exactly correct; this makes the structure sensitive to the

effectiveness of the algorithm.

A second interesting feature of EGO comes from the

diffraction by the constituent elements. If we exclude the weak

contribution from the oxygen atoms, then the diffraction

patterns from each of the two metal-atom sublattices show

notable features. Kinematical diffraction patterns for the

erbium and germanium sublattices for �8 � h; k � 8 were

simulated using the mulslice program in the TEMSIM soft-

ware package (Kirkland, 1998) and are shown in Figs. 4(a) and

(b), respectively. The theoretical kinematical diffraction

pattern for the complete structure (from the structure factors

used in Fig. 3) is shown in Fig. 4(c). All the simulated

diffraction patterns in this paper were generated as CBED

patterns (with a convergence angle chosen such that the discs

are just short of touching) to make a visual comparison of the

spot intensities as easy as possible.

Comparison of Figs. 4(a) and (b) suggests that the erbium

sublattice dominates the strong reflections (for example the

400, 440 and 110 reflections) and contributes significantly to

only a few other low-order reflections. The germanium

sublattice, however, contributes significantly to all the lower-

order reflections in the diffraction pattern; significantly, this

includes several strong reflections such as 210 and 320. These

reflections are likely to have a strong influence on the position

of peaks within the structure and so phasing these correctly

with respect to both sublattices will be vital to the recovery of

a good structure solution.

3. Structure solutions using charge flipping

Fig. 5 shows a typical solution obtained by the charge-flipping

algorithm. This solution was found using the structure-factor

moduli used in Fig. 3 with p1 plane-group symmetry and with

Friedel symmetry applied such that F�hk ¼ Fhk. The charge-

flipping algorithm allows the structure-factor phases to take

any value in the initial stage of the algorithm. The threshold

value � was set to 5% of the peak pixel intensity in the density;

this value was found through experimentation to constrain the

positivity requirement of the algorithm and also to allow

sufficient freedom to explore the solution space and find good
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Figure 3
Projected potential map for the [001] zone axis of EGO. A 4 � 4 grid has
been added to highlight the relationship to the strong 400 and 040
reflections in the kinematical diffraction pattern (shown in Fig. 4). All
reflections in the range �15 � h; k � 15 were included.



solutions. For this reason, and for consistency between the

results, this threshold value was used for all of the solutions

described in this article.

The solution in Fig. 5 bears little resemblance to the ideal

projected potential map in Fig. 3. At best, it seems that the

positions of the double germanium-atom columns have been

revealed by the algorithm, even if the ‘doublets’ are not

resolved as two peaks, and some of the erbium-atom columns

appear to be present. However, there are additional peaks in

the potential that do not correspond to atom columns from the

ideal structure, and all the strong peaks appear to lie on a 4 �

4 grid defined by the strong 400 and 040 reflections. It seems

likely that the majority of the strong reflections have been

phased to the germanium-atom positions (which do satisfy the

structure-factor moduli well) and this incorrect phasing has

led to a solution that satisfies the remaining intensity distri-

bution, despite being a relatively poor match to the true

structure.

Despite the weakness of this solution, the algorithm has

found a minimum in solution space, which suggests that some

of the phase relationships between reflections must have

relevance to the correct solution. Furthermore, the [001]

projection of a P41212 structure has p4gm plane-group

symmetry, which establishes several significant phase rela-

tionships between groups of reflections (shown in Fig. 6) that

should improve the final solution. So, rather than impose

symmetry on the phases from the start, the new algorithm was

developed to enable symmetry to be imposed on the solution

after a regular number of iterations (denoted by psym).

Examples of the solutions recovered from the algorithm with

psym = 2, 20 and 40 iterations are shown in Fig. 7.

When psym is large (Figs. 7b and c), the algorithm produced

a solution which contained all the heavy-atom peaks and

agreed well with the ideal structure shown in Fig. 3. The

structure found using a small value of psym contains strong

peaks that match the position of the germanium-atom doub-

lets but the rest of the structure was not recovered. Much like

the p1 structure in Fig. 5, the algorithm seems to have phased

all the reflections to the ‘germanium solution’ rather than to

the real structure.

The behaviour of the algorithm can be described using the

concept of the ‘feasible-set approach’ described by Marks et al.

(1999). Here a solution space is created in which every real-

space potential map can exist; a subset of this space (S1)

contains all of the solutions that satisfy the structure-factor
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Figure 5
Output structure from the charge-flipping algorithm for theoretical EGO
diffracted intensities using p1 symmetry after 80 iterations. Note that the
peaks sit approximately at the corners of a 4 � 4 grid (cf. Fig. 3).

Figure 4
Calculated kinematical diffraction patterns for the [001] zone axis of
EGO, showing the contributions from (a) the erbium-atom columns
alone, (b) the germanium-atom columns alone and (c) the complete EGO
structure.



moduli |F| input into the algorithm. A second subset (S2)

contains all of the solutions that satisfy the constraint applied

by the algorithm (in this case, sparseness and a positive pixel

intensity). A perfect set of structure-factor data for a crystal

with a unique solution would therefore lead to a single contact

between the sets, although limitations in the accuracy of the

structure-factor data will result in two non-contacting sets.

During each iteration of the algorithm the solution will move

from the start point in S1 to the nearest point in S2 and then to

the nearest point in S1 as the different parts of the Fourier

cycle are completed. In the conventional charge-flipping

algorithm, this should converge towards a solution with the

minimum possible negativity. This is shown schematically in

Fig. 8(a). The application of symmetry to the algorithm forces

an additional constraint and effectively reduces the accessible

part of the solution set (S1). This is shown in Fig. 8(b) and
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Figure 7
Solutions from the symmetry-applied charge-flipping algorithm for
theoretical kinematical EGO data with psym of (a) 2, (b) 20 and (c) 40
iterations. All reflections in the range �15 � h; k � 15 were included in
all solutions.

Figure 6
Phase relationships for reflections corresponding to the p4gm plane
group. The dashed lines show the positions of glide planes and the solid
lines show the positions of mirror planes in the reciprocal lattice;
reflections in green have a phase of � while those in red have a phase of 0.
In (a) for hþ k ¼ 2nþ 1 the glide planes act as ‘anti-mirrors’ producing
p40m0m symmetry, while in (b) for hþ k ¼ 2n the glide planes act as
mirrors, producing p4mm symmetry.



helps to explain why the process can stagnate if symmetry is

applied from the outset of the algorithm. In this case, the

solution becomes trapped in the first local minimum encoun-

tered in the symmetry-constrained solution set, while other

potentially better minima are unexplored.

The application of symmetry after a number of iterations

allows the algorithm to explore the negativity constraint more

completely before the additional symmetry constraint alters

the solution set. This is shown in Fig. 8(c). In this case, the

solution is able to explore minima that satisfy the negativity

constraint and then explore the symmetry-constrained set that

offers the most improved negativity. In this sense, the algo-

rithm is exploring the full set of solution space before the

additional constraint is added in the expectation of an

improved solution. Of course, once the symmetry is applied,

the solution will become trapped in a local minimum in the

constrained solution set, but this minimum should offer a

better solution with respect to both negativity and symmetry

constraints than would be found otherwise.

This behaviour can be seen by investigating the statistical

entropy of the solution at each step of the algorithm. Statis-

tical entropy can be considered as a measure of the ‘peakiness’

of a data set (Jaynes, 1957). A high entropy indicates a solution

with well defined strong peaks rather than low-intensity noise

and so is likely to indicate a solution that represents atomic

potentials rather than Fourier ripples. The entropy, S, was

calculated using

S ¼ �
P

R

�R lnð�RÞ; ð1Þ

where �R is the normalized intensity of pixel R in the real-

space solution and the sum is over all the pixels in the density.

As an independent measure of the fidelity of the solution, the

total intensity of all the negative pixels in the solution was also

calculated after each iteration. These two quantities were

measured for a range of psym from 2 to 40 and are shown in

Figs. 9(a) and (b), respectively.

The evolution of entropy and negativity for psym = 2 shows

that when symmetry is applied very early in the algorithm, the

solution settles rapidly into a stable minimum in the

constrained solution space (cf. Fig. 8b). While this solution

satisfies the criteria by locating a minimum in the local solu-

tion space, the entropy indicates that the structure is

comprised predominantly of weak ripples rather than strong

atomic peaks. This is evident in the solution (Fig. 7a), where

there are only four peaks and a large amount of the unit cell is

filled with weak background. This solution may represent a

local minimum in negativity but may not be particularly strong

when compared with other global solutions.

The entropy curve also shows a fundamental effect that

must be considered: once symmetry has been applied to a

solution there is no mathematical way to remove or alter the

constraint. The action of the Fourier cycle will always preserve

symmetry that exists in the solution; only numerical artefacts

are able to introduce any variation. This is the reason why

applying the symmetry constraint from the outset of the
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Figure 8
Schematic diagrams of the operation of the charge-flipping algorithm
under different conditions: (a) p1 symmetry, (b) higher symmetry applied
from the outset of the algorithm, (c) higher symmetry applied after a
number of iterations. S1 represents a set containing all solutions that
satisfy the structure-factor data and S2 represents all solutions that satisfy
the positivity criterion. The black arrows indicate the migration of the
algorithm from a random starting solution towards one that satisfies the
constraints applied by the algorithm. In (b) and (c) the dotted lines
indicate the extent of S1 under p1 symmetry while the solid line
represents the extent of the set under higher applied symmetry. The light
grey arrows in (c) indicate the migration of the algorithm under p1
symmetry and the black arrows indicate the further development of the
solution with the higher-symmetry constraint.

Figure 9
Error metrics for the EGO structure solutions using different values of
psym showing (a) the statistical entropy (in arbitrary units) and (b) the
total negative pixel intensity (in arbitrary units) as a function of the
number of iterations.



charge-flipping algorithm is so harmful to the likely outcome;

it also alters the original idea of the algorithm, which was to

apply symmetry periodically. Clearly, the subsequent appli-

cation of symmetry will not alter the set of structure factors

that are accessed by the algorithm. However, for large values

of psym small numerical artefacts (such as rounding errors)

could lead to the symmetry breaking and the algorithm

reverting to p1 symmetry, so the periodic application of

symmetry every psym cycles was retained in the algorithm to

ensure that the symmetry is preserved. This supports the

conclusion drawn in the original study of the technique by

Oszlányi & Süto�� (2004).

When a large number of iterations are carried out before

the application of symmetry ðpsym � 10Þ, something important

occurs: the solution is able to approach a stable minimum in p1

symmetry (shown by the low-entropy plateau) which has less

well defined strong peaks; but after symmetry is applied the

entropy increases dramatically before decreasing again to a

new stable solution. The notable feature is that the second

stable entropy is considerably larger than the first, indicating a

solution with more strongly defined atomic peaks. The reason

for the short period of change after the application of

symmetry is shown in the negativity curve. The stable p1

solution satisfies the reduced-negativity criterion of the algo-

rithm, but after symmetry is imposed it is not unexpected that

more pixels will be made negative as the phases of the solution

are altered. A few iterations are needed for this negativity to

be removed from the solution; the final stable solution shows

increased entropy with respect to the intermediate solution,

but there is insignificant change in the overall negativity after

the application of symmetry. This is analogous to the reloca-

tion in the constrained solution space to the secondary

minimum (as described by Fig. 8c).

The entropy and negativity curves for the solution with psym

= 40 show why care is needed when using this algorithm. While

the solution recovered in this instance is good when compared

with the ideal structure, the entropy curve shows that the

intermediate stable solution did not form until more than 25

iterations had been carried out (compared with fewer than 10

iterations in the psym = 20 example). While this lag time is a

common feature of charge flipping, the choice of too small a

value of psym could have affected the outcome of the algo-

rithm. It is therefore important to run the algorithm many

times with different starting (random) phases to ensure

consistency.

The algorithm was then applied to experimental precession

electron diffraction data (Vincent & Midgley, 1994) from a

single EGO crystal 55 nm thick. The precession angle was

42 mrad and reflections with �9 � h; k � 9 were included.

The result is shown in Fig. 10. In this solution the positions of

the atom columns that are recovered are accurate compared

with the ideal structure. The widths of the peaks are somewhat

larger than in the ideal structure and there is also significant

background negativity (indicated by the dotted contours in the

potential map). EGO is tetragonal with a large c axis, so that

for the [001] zone axis the first-order Laue-zone reflections

appear quite close to the centre of the diffraction pattern. The

large precession angle exacerbates this problem by increasing

the number of higher-order Laue-zone reflections that are

sampled by the Ewald sphere, and thus reduces the range of

reflections that can be used to �9 � h; k � 9 to avoid overlap

with the zero-layer reflections; it is this reduced data set that

causes the peaks to be wider than in the ideal structure.

Further experimental data for this sample will be published in

a forthcoming article (Eggeman et al., 2009).

4. Conclusion

In the case of electron diffraction it seems clear that the

symmetry-modified charge flipping algorithm is extremely

useful for structure solution. As shown by the cases of kinoite

and epidote, it is not clear why some structures can be readily

solved in p1 and why some need a higher-symmetry constraint.

Unlike X-ray diffraction data, often very little (if any) three-

dimensional data are obtained from electron diffraction

experiments. We surmise that three-dimensional data will

strongly constrain the possible locations of peaks within the

real-space solution, preventing spurious peaks from forming

and forcing real peaks to become more evident. The absence

of this constraint in two-dimensional electron diffraction

patterns means that some solutions may form where the

majority of the potential is forced into a few strong peaks that

still satisfy the algorithm: this can be seen in both EGO, where

the germanium doublet positions tend to distort the p1 solu-

tion, and in epidote, where the weaker peaks in the centre of

the cell are lost compared with the stronger peaks at the unit-

cell edges.
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Figure 10
Structure solution recovered from experimental precession electron
diffraction data for a 55 nm-thick EGO crystal with a beam precession
angle of 42 mrad and psym = 40. All reflections in the range�9 � h; k � 9
were included (cf. the ideal structure in Fig. 3).



The inclusion of a symmetry constraint can be highly

advantageous; however, some provisos are needed. Firstly, the

initial structure ‘guess’ must have no symmetry imposed

greater than that provided by Friedel’s law, as this will reduce

the freedom of the algorithm to find a suitable minimum.

Secondly, the algorithm must be allowed to run for a sufficient

number of iterations to establish a stable (even if incomplete)

intermediate structure, as this will establish a set of viable

phase relationships between the stronger reflections in the

data set. Finally, once the symmetry is applied the algorithm

may need several more iterations for the correct phasing of

the majority of reflections to occur, and once a stable structure

has formed further iterations will not allow the solution to

develop further. As with all iterative algorithms, the stable

structure recovered by this process is only correct in that it

satisfies the structure-factor moduli input into the algorithm

and seeks to maximize the conditions of the algorithm itself;

there can be ‘correct’ solutions that differ from the ideal

structure. From this study it seems that monitoring the entropy

of the solution can help in the selection of a structure,

although careful interpretation is always required.
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